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Abstract

To simulate flows around solid obstacles of complex geometries, various immersed boundary methods had been devel-
oped. Their main advantage is the efficient implementation for stationary or moving solid boundaries of arbitrary complex-
ity on fixed non-body conformal Cartesian grids. The Brinkman penalization method was proposed for incompressible
viscous flows by penalizing the momentum equations. Its main idea is to model solid obstacles as porous media with poros-
ity, /, and viscous permeability approaching zero. It has the pronounced advantages of mathematical proof of error
bound, strong convergence, and ease of numerical implementation with the volume penalization technique. In this paper,
it is extended to compressible flows. The straightforward extension of penalizing momentum and energy equations using
Brinkman penalization with respective normalized viscous, g, and thermal, gT, permeabilities produces unsatisfactory
results, mostly due to nonphysical wave transmissions into obstacles, resulting in considerable energy and mass losses
in reflected waves. The objective of this paper is to extend the Brinkman penalization technique to compressible flows
based on a physically sound mathematical model for compressible flows through porous media. In addition to penalizing
momentum and energy equations, the continuity equation for porous media is considered inside obstacles. In this model,
the penalized porous region acts as a high impedance medium, resulting in negligible wave transmissions. The asymptotic
analysis reveals that the proposed Brinkman penalization technique results in the amplitude and phase errors of order

O((g/)1/2) and O((g/gT)1/4/3/4), when the boundary layer within the porous media is respectively resolved or unresolved.
The proposed method is tested using 1- and 2-D benchmark problems. The results of direct numerical simulation are in
excellent agreement with the analytical solutions. The numerical simulations verify the accuracy and convergence rates.
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1. Introduction

Numerical simulations of viscous flows around solid obstacles of arbitrary shapes are often required for
practical engineering applications. Two general techniques had been developed for the complex geometry
problems. Namely, they are body-fitted grid methods [1,2] and immersed boundary techniques [3,4]. In con-
ventional structured/unstructured body-fitted grid methods, the grids are generated to conform to the complex
boundaries. Therefore, it is pretty easy to specify boundary conditions and to attain satisfactory accuracy by
putting fine mesh for boundary layers, where high resolutions are required, which is critical for high Reynolds
number flows. However, there are some disadvantages for these methods. The grid generation process may be
very expensive: it is not an easy task to generate the grid with good quality even for simple geometries and
simulations for moving boundary problems become prohibitively expensive due to grid generation and solu-
tion interpolation to the new mesh at each time step. An alternative approach, the immersed boundary meth-
ods, is to carry out simulations on non-body conformal fixed Cartesian grids and to formulate a procedure for
imposing immersed boundary effects on the fluid. Its main advantage is the efficient implementation for sta-
tionary and moving solid boundaries of arbitrary complexity.

Since Peskin’s immersed boundary method [5] was originally introduced to study flow patterns around
heart valves, a various immersed boundary techniques had been developed. These methods had mostly been
carried out for the incompressible viscous flows. In Peskin’s immersed boundary method [5], incompressible
flows are solved with the Navier–Stokes equations and the immersed boundary, modeled as elastic media,
exerts localized forces to the fluids and modifies the momentum equations. For the solid obstacle problem,
a stiff spring with a restoring force is used for the elastic media [6]. This method had been extended by Gold-
stein et al. [7] and Saiki and Biringen [8], using a feedback forcing to represent the immersed boundary effects
for rigid body problems. However, these methods have some drawbacks. The methods use an explicit time-
stepping scheme for the resulting stiff problems and, thus, the corresponding small computational time step
severely restricts the simulations. The underlying grids are nonadaptive, making the methods inefficient for
the high Reynolds number flow around solid obstacles. Finally, there is not yet any mathematical convergence
proof for these methods.

A number of other immersed boundary methods had been developed for the incompressible viscous flows
around complex solid boundaries. In contrast to the Peskin’s immersed boundary methods using external
forces to simulate the immersed boundaries, Cartesian grid methods [9–12] and ghost-cell immersed boundary
method [13] directly impose the boundary conditions on the immersed boundaries. Another interesting
approach is the Brinkman penalization method. This volume penalization technique was originally proposed
by Arquis and Caltagirone [14]. The boundary conditions are imposed by adding the penalization terms to the
momentum equations. Its main idea is to model arbitrarily complex solid obstacles as porous media with
porosity / and permeability approaching zero. Similar to the Peskin’s immersed boundary methods, the
immersed boundary exerts localized forces to the fluids and modifies the momentum equations. This method
has some pronounced advantages. Boundary conditions can be enforced to a specified precision, without
changing the numerical method (or grid) used to solve the equations. The main advantage of this method,
compared to other penalization type methods, is that the error can be estimated rigorously in terms of the
penalization parameter [15]. It can also be shown that the solution of the penalized incompressible Navier–
Stokes equations strongly converges to the exact solution as the penalization parameter approaches zero [16].

By contrast, the immersed boundary methods had seldom been developed for the compressible viscous flows.
The Cartesian grid method [17] was used to simulate the compressible flows around a circular cylinder and an
airfoil at high Reynolds numbers by directly modifying the discretized equations near the immersed boundaries.
However, the acoustic wave reflection and transmission at the interface between fluid and solid media had not
been taken into account, which are critical in some applications with acoustic and shock wave propagation
around solid obstacles. The Impedance Mismatch Method is another technique to model the acoustic wave
propagation around solid wall boundaries using the non-body conformal cartesian grids. Originally developed
by Chung [18], the Impedance Mismatch Method had only been performed for the linearized acoustic problems
with steady mean flows [19–21] and has never been applied to unsteady non-uniform flow problems. Its
main idea is to set a larger characteristic impedance inside the solid obstacle so that most acoustic waves are
reflected by the classical theory of acoustics. For the numerical stability purpose, the non-dimensional density



948 Q. Liu, O.V. Vasilyev / Journal of Computational Physics 227 (2007) 946–966
is recommended to be qs = 30 for the obstacle while qf = 1 for fluids. This means theoretically that the reflected
wave amplitude error is 1� qs�qf

qsþqf
, which is approximately equal to 6.5%, and the reflected wave energy error is

1� qs�qf

qsþqf

� �2

, which is approximately equal to 12.5%. These errors are not sufficiently accurate in some cases and

even worse for the shock wave propagation. Another drawback of this approach is that it has no mechanism to
set up the no-slip conditions and other immersed boundary conditions. Cohen et al. [22] extended this method
to unsteady non-uniform flow problems. However, some serious problems for convective term handling, the
stability, and accuracy of reflection for acoustic sources exist in the near vicinity of an interface.

The objective of this paper is to extend the Brinkman penalization technique to compressible flows based on
a physically sound mathematical model for compressible flows through porous media. In the proposed formu-
lation, in addition to Brinkman penalization of momentum and energy equations, the continuity equation is
also modified inside the obstacle so that it is consistent with the porous media flow physics. In this model, the
penalized porous region acts as a high impedance medium, resulting in negligible wave transmissions.
The error bounds of the proposed compressible formulation are estimated using an asymptotic analysis of
the plane acoustic wave propagation through fluid–porous media interface and verified numerically.

It should be noted that the proposed Brinkman penalization approach can be used in combination with any
numerical technique as well as with body-fitted meshes. In the latter case, the penalization can be only applied
to certain flow regions where geometry is modified without changing computational mesh. In addition, as
pointed out by Mittal and Iaccarino [4], for high Reynolds number flows the use of the proposed approach,
as well as other immersed boundary techniques, will be prohibitively expensive if no adaptive meshes are used
in the vicinity of solid walls. However, if proposed or other immersed boundary techniques are implemented
using adaptive mesh refinement methods, the computational cost of having additional nodes inside of the
obstacle is minimal, since most of the grid points are concentrated in a thin layer close to the surface of
the obstacle. The efficient use of Brinkman penalization technique for incompressible flows in the context
of adaptive wavelet collocation method has been successfully demonstrated by Kevlahan and Vasilyev [23].
Another important aspect of the Brinkman penalization is that introduction of penalty terms into Navier–
Stokes equations results in additional stiffness, thus requiring the use of stiffly stable solvers or implicit treat-
ment of the penalization terms. Due to the general applicability of the proposed methodology, the numerical
issues related to its implementation are not discussed in this paper. However, all the results reported in this
paper were obtained using a dynamically adaptive wavelet collocation method [24–26] with Krylov time inte-
gration scheme [27]. The corresponding cost, accuracy, and implementation issues are discussed in the previ-
ous work [23] on Brinkman penalization method for incompressible flows.

The rest of the paper is organized as follows. A brief review of porous media equations for compressible
flows is given in Section 2. The proposed compressible Brinkman penalization method and the corresponding
accuracy and convergence, using both the theory of acoustics and asymptotic analysis, are given in Section 3.
Finally, two acoustic benchmark problems are discussed in Section 4 to verify the accuracy and convergence
rates of the proposed method.
2. A brief review of porous media equations

In the Brinkman penalization method [14] for incompressible flows, the solid obstacles are modeled as por-
ous media. The governing Navier–Stokes equations for fluids and penalized Navier–Stokes equations for por-
ous media are solved simultaneously. Thus, there is no need to specify the interface conditions directly,
because they are automatically solved from the governing equations. However, appropriate interface condi-
tions solved from the coupled governing equations are critical for satisfactory numerical solutions. Therefore,
the appropriate governing equations around the boundary layer between fluids and porous media are crucial
to obtain the appropriate interface conditions. To simulate compressible viscous flows around bluff bodies, a
straightforward extension of the incompressible Brinkman penalization method [26] is to penalize the momen-
tum and energy equations. However, this extension produces unsatisfactory results, mostly due to nonphysical
wave transmissions into obstacles resulting in considerable energy and mass losses in reflected waves. The
losses for shock wave propagation are even worse. The reason is that an inconsistent interface conditions
are solved from the coupled governing equations automatically. In this section, a brief review of the physics
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and the governing equations for the compressible porous media are given in order to obtain the appropriate
interface conditions. For the details, we refer to books [28–30].

2.1. Some properties of porous media

Porous media consist of solid matrices with interconnected pores, which are saturated by fluids and allows
fluid flows through the material. Two important length scales for the flow through permeable media are the
characteristic size of pores d and the macroscopic length scale L. Two important characteristics of porous
media are the porosity / and the permeability K. / is the volume fraction of connected pores allowing fluid
flows while K is the measure of the flow conductance of the solid matrix, which is proportional to /d2.

An important flow property is the velocity. The interstitial velocity of the fluid u = (u1,u2,u3) and the seep-
age or Darcy velocity v = (v1,v2,v3) are related by the Dupuit–Forchheimer relationship [28]:
v ¼ /u: ð1Þ
Since the porosity /� 1, the magnitude of v is substantially smaller than that of u.

2.2. Continuity equation

For the porous media, the conservation of mass can be written as
oq
ot
¼ � 1

/
o

oxj
ðqvjÞ; ð2Þ
where q is the interstitial fluid density, assuming that the porosity / = /(x).

2.3. Darcy’s law, Brinkman equation and extensions

A number of momentum equations exist in the literature for the porous media. The first is the Darcy’s law
[31]:
v ¼ �K
l
rp; ð3Þ
where l is the dynamic viscosity and p is the intrinsic fluid pressure. In this law, the pressure gradient driving
the motion balances the viscous stress gradient resisting the flow. It reveals a proportionality between the
flow rate and the applied pressure gradient. In order to meet the no-slip boundary conditions requirement,
by placing an additional viscous term, the Darcy’s law was extended to the well-known Brinkman equation
[32,33]:
rp ¼ � l
K

vþ lr2v; ð4Þ
where two viscous terms exist. The first is the usual Darcy term and the second is the Laplacian term analo-
gous to that in the Navier–Stokes equation.

To make the momentum equation analogous to the Navier–Stokes equations, Wooding [34] extended the
Darcy’s law to
q /�1 ov

ot
þ ð/�1v � rÞð/�1vÞ

� �
¼ �rp � l

K
v; ð5Þ
and Vafai and Tien [35] and Hsu and Cheng [36] extended the Brinkman equation to
q /�1 ov

ot
þ ð/�1v � rÞð/�1vÞ

� �
¼ �rp � l

K
vþ lr2v: ð6Þ
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These two extensions can be derived by the local volume-averaging method [35,30]. By incorporating the con-
tinuity equation to these two extensions, the conservative form can be written as
1

/
oqvi

ot
¼ � 1

/
o

oxj
ðq/�1vivjÞ �

op
oxi
� l

K
vi; ð7Þ

1

/
oqvi

ot
¼ � 1

/
o

oxj
ðq/�1vivjÞ �

op
oxi
þ l

o2vi

ox2
j

� l
K

vi: ð8Þ
These momentum equations are the models for the porous media. Beck [37] pointed out that the inclusion of
the convection term (/�1v Æ $)(/�1v) was inappropriate due to the order rising of the spatial derivatives and
inconsistence with the slip boundary condition. Nield and Bejan [28] suggested to drop it in numerical work.
The equations suggest that momentum decays in the order of exp[ � (//K)t] and even dropping the coefficients
/�1 of the left hand side, the momentum decays sufficiently fast. Thus, modification of the left hand side does
not change the solutions much. In the actual governing equations of the proposed model, the momentum
equation is further simplified to make it analogous to the compressible Navier–Stokes equation with addi-
tional Brinkman penalization term, thus resulting in straightforward implementation. This simplification is
possible since the penalization term results in significant damping of the momentum inside of the porous med-
ia, while satisfying consistent no-slip boundary at the interface.

2.4. Energy equation

Finally, the energy equation can be written as
oe
ot
¼ � o

oxj
½ðeþ pÞvj� þ

o

oxj
k

oT
oxj

� �
� h

/
ðT � T 0Þ; ð9Þ
where heat transfer between solid and fluid are allowed for thermal non-equilibrium, e is the total energy, h is a
heat transfer coefficient, and T0 is the solid temperature.

3. Brinkman penalization method for compressible flows

Before considering the compressible flows, a brief review of the Brinkman penalization method for the
incompressible flows is given. Then, it is extended to compressible flows, by combining the Navier–Stokes
equations and the compressible porous media equations and making the resulting momentum equations anal-
ogous to those in the incompressible Brinkman penalization method. Finally in this section, the corresponding
error bounds are analyzed using the theory of acoustics and asymptotic analysis.

3.1. Brinkman penalization method for incompressible flows

A viscous incompressible fluid is governed by the Navier–Stokes equations
ou

ot
þ u � ruþrP ¼ mDu; ð10Þ
For the direct numerical simulation (DNS), consider a viscous incompressible flows around a set of obstacles
Oi. The flows are simulated numerically in a rectangular domain X = [L1,L2] · [M1,M2] containing all the
obstacles Oi. On the surface of the obstacles the velocity must satisfy the no-slip condition,
u ¼ Uo on oOi; 8i; ð11Þ

where Uo is the velocity of the obstacle.

To model the effect of the no-slip boundary conditions on the obstacles Oi without explicitly imposing (11),
we follow Angot et al. [15] by replacing (10) and (11) by the following set of L2-penalized equations
ou

ot
þ u � ruþrP ¼ mDu� 1

g
vðx; tÞðu�UoÞ; ð12Þ
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Note that Eq. (12) are valid in the entire domain X: the last term on the right hand side of (12) is a volume
penalization of the flow inside the obstacle. Here, 0 < g� 1 is a penalization coefficient and v denotes the
characteristic (or mask) function
vðx; tÞ ¼
1 if x 2 Oi;

0 otherwise:

�
ð13Þ
3.2. Brinkman penalization method for compressible flows

The governing full compressible Navier–Stokes equations are as follows:
oq
ot
¼ � omj

oxj
; ð14Þ

omi

ot
¼ � omiuj

oxj
� op

oxi
þ osij

oxj
; ð15Þ

oe
ot
¼ � o

oxj
½ðeþ pÞuj� þ

o

oxj
uisij

	 

þ o

oxj
k

oT
oxj

� �
; ð16Þ
where
p ¼ qRT ;

sij ¼ l
oui

oxj
þ ouj

oxi
� 2

3

ouk

oxk
dij

� �
;

e ¼ 1

2
quiui þ

p
c� 1

;

where q is the density of the fluid (gas), mj = quj is the mass flux, p is the pressure, sij is the shear stress tensor,
l is the coefficient of dynamic viscosity of the fluid, which is temperature dependent, e is the total energy, k is
the thermal conductivity which is temperature dependent, T is the absolute temperature, R = (c � 1)cv is the
gas constant, and c ¼ cp

cv
.

On the surface of the obstacles the velocity must satisfy the no-slip condition, while temperature of the
object is assumed constant
u ¼ Uo

T ¼ T o

�
on oOi; 8i; ð17Þ
where Uo and To are respectively, the velocity and the temperature of the obstacle. To specify the no-slip
boundary conditions and temperature on the obstacles Oi without explicitly imposing (17), we can simply fol-
low the Angot et al. [15] by adding penalty terms into momentum and energy equations. However, this
straightforward extension produces unsatisfactory results, mostly due to nonphysical wave transmissions into
solid obstacles, resulting in considerable energy and mass losses in reflected waves. By incorporating the two
sets of Navier–Stokes equations and porous media equations and making the momentum equation analogous
to that in the incompressible Brinkman penalization method, the non-dimensional Brinkman penalization
method for the compressible flows becomes:
oq
ot
¼ � 1þ 1

/
� 1

� �
v

� �
omj

oxj
; ð18Þ

omi

ot
¼ � o

oxj
miuj

	 

� op

oxi
þ 1

Rea

osij

oxj
� v

g
ðui � UoiÞ; ð19Þ

oe
ot
¼ � o

oxj
ðeþ pÞuj

� 

þ 1

Rea

o

oxj
ðuisijÞ þ

1

ReaPrðc� 1Þ
o

oxj
l

oT
oxj

� �
� v

gT

ðT � T oÞ; ð20Þ
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where
p ¼ qT=c;

sij ¼ l
oui

oxj
þ ouj

oxi
� 2

3

ouk

oxk
dij

� �
;

e ¼ 1

2
quiui þ

p
c� 1

;

/ is the porosity, g = a/ is a normalized viscous permeability, gT = aT/ is a normalized thermal permeability,
Rea ¼ q0c0L

l0
is the acoustic Reynolds number, Pr ¼ lcp

k is the Prandtl number, and Uo and To are the obstacle’s

normalized velocity and temperature. Note that in the subsequent analysis the following inequality are as-
sumed: 0 < /� 1, 0 < g� 1, and 0 < gT� 1. The variables of velocity, length, time, energy, density, pres-
sure, viscosity, thermal conductivity, and temperature are respectively non-dimensionalized by the reference
speed of sound c0, characteristic length L, L/c0, c2

0, the reference density q0, q0c2
0, the reference viscosity l0,

l0cp0
, and the reference temperature T0. Note that the pressure is not non-dimensionalized by the reference

pressure p0 = q0RT0. Also note that Eqs. (18)–(20) are valid in the entire domain X: the last term on the right
hand side of Eqs. (19) and (20) is a volume penalization of the flow and temperature inside the obstacle.

The compressible Brinkman penalized Navier–Stokes Eqs. (18)–(20) can be used for general compressible
flow simulations. Due to the difficulty of obtaining exact error bounds for general case, in the following Sec-
tions 3.3 and 3.4 the amplitude and phase error analysis is performed for the case of acoustic wave propaga-
tion in the small amplitude limit and the error bounds are established. Due to physical consistency of the
proposed methodology and independence of the asymptotic expansion in the porous media region on the wave
amplitude, as explained in Section 3.4, the error estimates are valid for the general subsonic flows. However,
the error analysis presented in this paper is not valid for the case of incident shock wave. The extension of the
analysis for the Euler equations with shock waves and the use of the Brinkman penalization technique with
hyperbolic solvers is currently under investigation.

3.3. Amplitude error estimates by acoustics theory

In this section, the amplitude error are estimated by the classical theory of acoustics [38] from the physical
viewpoint. Consider the plane wave reflection and transmission at the interface between two different media.
The 1-D problem of wave propagation in fluid-porous media is modeled in a sudden change in cross-sectional
area and is sketched in Fig. 1. From the acoustics theory, the reflection coefficient R can be written as
R � pin

pref
¼ Z2 � Z1

Z2 þ Z1

; ð21Þ
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1−D wave propgation in fluid—porous media

Fig. 1. 1-D model of wave propagation in fluid-porous media.
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where pin is the incident acoustic pressure, pref is the reflected acoustic pressure, and Z1 and Z2 are the acoustic
impedance for the two media. The acoustic impedance at a given surface is the ratio of the surface-averaged
acoustic pressure to the fluid volume velocity:
Z ¼ qc=S; ð22Þ

where q is the density, c is the speed of sound, and S is the cross-sectional area.

The reflection coefficient formula suggests that the only way to make most parts of waves reflected from the
obstacles is to set the obstacle’s acoustic impedance sufficiently large. This is the basis for the Impedance Mis-
match Method [18] which uses the relatively low impedance ratio of value 30. For the proposed Brinkman
penalization method, suppose that porous media consist of a distribution of parallel tubes inside the solid
matrix. The corresponding reflection coefficient can be written as
R ¼ 1� /
1þ /

� 1� 2/; ð23Þ
where the same density and speed of sound for both media are assumed. The result of the amplitude error of
order O(/) for the reflected wave is consistent with the results from the following asymptotic analysis. Thus,
for a sudden change in cross-sectional area between fluids and porous media, the porous media act as a high
impedance medium with Z = qc//, resulting in negligible wave transmissions.

3.3.1. Speed of sound in porous media

This subsection is used to verify the assumption that the speeds of sound in both media are same in the limit
of small porosity. For simplicity, we consider the dimensional Euler equations for the conservative variables:
ou

ot
þ A

ou

ox
¼ 0; ð24Þ
where u = {q qu e}T is the vector of the conservative variables and the Jacobian matrix can be written as
A ¼
0 /�1 0

c�3
2

u2 ð3� cÞu c� 1

�cueq�1 þ ðc� 1Þu3 ceq�1 � 3
2
ðc� 1Þu2 cu

2
64

3
75;
where
e ¼ 1

2
qu2 þ p

c� 1
:

Note that the case / = 1 is for the fluid region while other cases are for the porous media. For the details of
deriving this Jacobian matrix, we refer the reader to Chapter 2 in the classical Laney’s computational gasdy-
namics textbook [39]. Then term eq�1 can be simplified for convenience as follows
e
q
¼ 1

2
u2 þ p

ðc� 1Þq ¼
1

2
u2 þ c2

cðc� 1Þ ;
where c is defined as (cp/q)1/2. Note that at this point c is only a notation and is not associated with the speed
of sound.

To find the speeds of sound for both regions, the eigenvalues of the Jacobian matrix A need be first found
by solving the characteristic equation
jA� kIj ¼ 0; ð25Þ

which can be expended to the depressed (or standard) cubic equation
�ðk� uÞ3 þ c2 þ u2

2
ð/�1 � 1Þðc� 3Þ

� �
ðk� uÞ � c2uð/�1 � 1Þ þ u3

2
ð/�1 � 1Þðc� 1Þ ¼ 0:
Setting / = 1 for the fluid region yields three eigenvalues of u, u � c, and u + c. This implies the speed of
sound in the fluid region is c. For the porous media part, the eigenvalues are complicated, although three
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analytical roots can be found by the Cardano’s method. However, due to the strong damping effects for the
porous media region as indicated in Section 3.4 u � O(a/), where 0 < a,/� 1. Thus, ignoring the higher order
terms in the analytical solutions, three eigenvalues can be found to be u, u � c, and u + c, which implies that
the low porosity limit the speed of sound in the porous media is also c. Therefore, the speeds of sound are same
inside and outside of the porous media.

3.4. Amplitude and phase errors by asymptotic analysis

In this section, the amplitude and phase errors are estimated by the asymptotic analysis from the rigorous
mathematical viewpoint. Consider the incident waves with amplitude of order �. The 1-D problem of wave
propagation in fluid-porous media is sketched in Fig. 2. Note that the leading term asymptotic analysis for
the porous media region reported in this section assumes only low porosity and permeability limits and, thus,
can be used even for the large amplitude incident waves, i.e. � = O(1). Therefore, error estimates reported in
this section are valid for general subsonic flows. However, in order to obtain analytical solution in the entire
domain the small amplitude of the wave is explicitly assumed in the fluid region.

3.4.1. Asymptotic analysis for the fluid region

For the fluid region, the variables can be written as, keeping only the leading perturbation terms,
qfðx; tÞ ¼ 1þ �q0f þ � � � ; ufðx; tÞ ¼ �u0f þ � � � ; ð26Þ

pfðx; tÞ ¼
1

c
þ �p0f þ � � � ; T fðx; tÞ ¼ 1þ �T 0f þ � � � ð27Þ
where �� 1. By substituting them into Eqs. (18)–(20) and the equation of state, the leading terms result in the
classical acoustic wave equations
o2p0f
ot2
¼ o2p0f

ox2
;

o2u0f
ot2
¼ o2u0f

ox2
; ð28Þ
and the isentropic relation
q0f ¼ p0f ; T 0f ¼ ðc� 1Þp0f : ð29Þ
Thus, the classical acoustics theory [38] for plane wave propagation can be easily used. Note that the relation
q0f ¼ p0f results in the fact that the temperature perturbation is of same order of the q and p perturbations in the
fluid region.
−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

 Fluid

→

x

y

1−D wave propgation in fluid−porous media

Fig. 2. 1-D wave propagation in fluid-porous media.
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3.4.2. Asymptotic analysis for porous media region

For the porous media region, the variables can be written as, keeping only the leading perturbation terms,
qpðx; tÞ ¼ 1þ �q0p þ � � � ; upðx; tÞ ¼ �gu0p þ � � � ; ð30Þ

ppðx; tÞ ¼
1

c
þ �p0p þ � � � ; T pðx; tÞ ¼ 1þ �gTT 0p þ � � � ; ð31Þ
where the leading perturbation terms of up and Tp are different from their counterparts in the fluid region, due
to the strong Brinkman damping terms in the momentum and energy equations. Substituting them into Eqs.
(18)–(20) and the equation of state yields the relations
q0p ¼ cp0p;
op0p
ot
þ ðc� 1ÞT 0p ¼ 0; ð32Þ
and the partial differential equations:
oq0p
ot
þ a

oup

ox
¼ 0;

opp

ox
þ u0p ¼ 0; ð33Þ
where a = g//. Eq. (33) can be further reduced to
op0p
ot
¼ a

c

o
2p0p
ox2

;
ou0p
ot
¼ a

c

o
2u0p
ox2

: ð34Þ
Thus, different from the fluid region governing by the wave equations, the porous media are governed by
the diffusion equations. As a result, the complex function method for solving problems with harmonic
oscillating boundary conditions problem [40] can be applied easily. Note that the relation q0p ¼ cp0p results
from the fact that the temperature perturbation is relatively very small, compared with the density and
pressure perturbations.

3.4.3. Asymptotic analysis for the boundary layer

The above asymptotic analysis is valid for the fluid and porous media regions away from the porous media
interface, because the length and magnitude scales of the perturbations are valid in the two regions. However,
it is not valid in the immediate vicinity of the interface inside of the porous media. This fact is implied by the
conflicting relations between the perturbation of q and p in Eqs. (29) and (32) at the interface. This conflict
results from the different length and magnitude scales for the perturbation of T in Eqs. (27) and (31). Thus,
to get correct results, a boundary layer inside the porous media is needed to consider in order to match the two
solutions in the fluid and porous media regions. Note that for the fluid region, the perturbations of q, p, and T

have the same magnitude scale of O(�). Since the solutions in the boundary layer match those in the fluid
region at their interface, these three perturbations have the same magnitude scale of O(�) in both regions.
For the boundary layer, the variables can be written as, keeping only the leading perturbation terms,
qbðx; tÞ ¼ 1þ �q0b þ . . . ; ubðx; tÞ ¼ �gu0b þ . . . ; ð35Þ

pbðx; tÞ ¼
1

c
þ �p0b þ . . . ; T bðx; tÞ ¼ 1þ �T 0b þ . . . : ð36Þ
Substituting them into Eqs. (18)–(20) and the equation of state for the porous media results in the governing
equations for the boundary layer
oq0b
ot
¼ �a

ou0b
ox

; ð37Þ

op0b
ox
¼ �u0b; ð38Þ

op0b
ot
¼ � 1

gT

ðc� 1ÞT 0b; ð39Þ

cp0b ¼ q0b þ T 0b: ð40Þ
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Since q0b and p0b are of same order, the time derivatives
oq0

b

ot and
op0

b

ot are of same order. That means that a
o2p0

b

ox2 and
1
gT
ðc� 1ÞT 0b are of same order, which suggests that the thickness of the boundary layer is O(d), where

d = (agT)1/2. This thickness is also the length scale for q0b and T 0b. Since q0b and u0b couple through Eq. (37),
they share the same length scale. Due the small thickness of the boundary layer, Eq. (38) suggests that the
length scale for p0b is O(1).

Eqs. (37)–(40) is the approximate governing equations for the boundary layer. However, the very thin
boundary layer with thickness of O((agT)1/2) may become a very strict constrain for the numerical simulations.
Note that to resolve the boundary layer, around 10 mesh points need to put there, which makes the space step
size to be around O((agT)1/2/10). This size is extremely small for small a and gT values, which are needed to sat-
isfy the imposed immersed boundary conditions. However, the boundary layer is not so strong, since q0b change
only from p0f to cp0p. Thus, in order to get accurate numerical results, it is unnecessary to resolve the boundary
layer. On the other hand, the convergence rates for the resolved and unresolved cases are different and will be
shown to be O(a1/2/) and O((g/gT)1/4/3/4). Thus, both cases give accurate numerical results. These rates can be
viewed as estimates for the numerical error bounds and, thus, a1/2/ or (g/g T)1/4 /3/4 should be sufficiently small
to guarantee the accuracy of the numerical solution. In addition, in order to satisfy the no-slip and isothermal
boundary conditions the damping inside of the porous media should be fast enough not to interfere with the
external flow time scales and, thus, the magnitude of a/ and aT / should be small. In particular for turbulent
flows at high Reynolds numbers with a wide range of time scales, these two damping coefficients need to be
sufficiently small to ensure that the time scales associated with penalty terms are smaller than those of the ener-
getic part of the turbulent flows. These conditions set the guidelines for the selection of the three penalty param-
eters. In Section 4 two special cases are chosen to numerically verify these convergence rates. The first is the case
with a = 10�2, aT = 10�2, and the convergence rate of O(/) and O(/3/4), respectively. The second is the case
with a = /, aT = (c � 1), and the convergence rate of O(/3/2) and O(/), respectively.
3.4.4. Accuracy and convergence rates for the resolved boundary layer

If the boundary layer is resolved, the governing Eqs. (37)–(40) can be reduced to the governing equation
o2f
ot2
¼ � 1

gT

ðc� 1Þ c
of
ot
� a

o2f
ox2

� �
; ð41Þ
where f is the variable q0b, p0b, T 0b, or u0b. This is a wave equation with strong damping effects, which the numer-
ical simulations use to solve the boundary layer.

The solutions for the fluid region and the boundary layer can be obtained by matching them at the interface
between the fluid and the boundary layer. Since any smooth wave can be decomposed into the sum of har-
monic waves, without loss of generality, an incident acoustic harmonic wave with normalized amplitude from
the fluid region with the interface at x = 0 are considered. The reflected wave has some amplitude and phase
errors such that, from the classical acoustics theory [38] for the plane wave propagation, the superposition of
the incident and reflected waves at the interface is of the form
u0fðx ¼ 0; tÞ ¼ ½1� A expðihÞ� expðixtÞ; ð42Þ
p0fðx ¼ 0; tÞ ¼ ½1þ A expðihÞ� expðixtÞ: ð43Þ
It is assumed that
A ¼ 1þ a/A1; h ¼ a/h1; ð44Þ

where the amplitude error a/A1� 1 and the phase error a/h1� 1, which will be verified. In the absence of
shock waves the velocity and pressure are continuous in the entire domain. Thus, at the interface x = 0, uf = ub

and pf = pb, i.e., u0f ¼ a/u0b and p0f ¼ p0b, and the interface conditions for the leading order porous media solu-
tion at x = 0 are of the form
u0bðx ¼ 0; tÞ � �ðA1 þ ih1Þ expðixtÞ; ð45Þ
p0bðx ¼ 0; tÞ � 2 expðixtÞ: ð46Þ
The other boundary conditions are that perturbation velocity and pressure are finite at x!1.
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For this problem with harmonic oscillating boundary conditions, the complex function method [40] can be
used to solve Eq. (41) by seeking f in the form
f ðx; tÞ ¼ gðxÞ expðixtÞ: ð47Þ

Plugging this into the governing equation yields
d2g
dx2
¼ i

xc
a
� x2gT

aðc� 1Þ

� �
g; ð48Þ
for which the general solution can be written as
gðxÞ ¼ C expðk1xÞ þ D expðk2xÞ; ð49Þ

where
k1;2 ¼ 	 i
xc
a
� x2gT

aðc� 1Þ

� �1=2

¼ 	 1þ iffiffiffi
2
p cx

a

� �1=2

1þ xgT

cðc� 1Þ i
� �1

2

: ð50Þ
For sufficiently small gT� c(c � 1)/x Eq. (50) can be simplified
k1;2 � 	
1þ iffiffiffi

2
p cx

a

� �1=2

1þ 1

2

xgT

cðc� 1Þ i
� �

: ð51Þ
Keeping only the leading term yields
k1;2 � 	ð1þ iÞ cx
2a

� �1=2

: ð52Þ
The general solution can be used to find the solutions for u0b and p0b after incorporating the boundary
conditions.

The corresponding solutions for the resolved boundary layer become
u0bðx; tÞ ¼ �ðA1 þ ih1Þ exp �ð1þ iÞ cx
2a

� �1=2

xþ ixt
� �

; ð53Þ

p0bðx; tÞ ¼ 2 exp �ð1þ iÞ cx
2a

� �1=2

xþ ixt
� �

: ð54Þ
By substituting the solutions to Eq. (38), the following relations are obtained
A1 ¼ h1 ¼ �ð2cx=aÞ1=2
; ð55Þ
and thus, the amplitude and phase errors are as follows
a/A1 ¼ a/h1 ¼ �ð2cxaÞ1=2/ ¼ �ð2cxÞ1=2ðg/Þ1=2
; ð56Þ
from which a/A1 = a/h1� 1 is verified.
Therefore, the amplitude and phase errors are of O(a1/2/). This can be viewed as an estimate for the numer-

ical error bound and, thus, the magnitude of the porosity / should be sufficiently small to guarantee the accu-
racy of the numerical solution.

3.4.5. Accuracy and convergence rates for the unresolved boundary layer

If the boundary layer is unresolved, Eqs. (37)–(40) no longer accurately describe the numerical approxima-
tion. Instead, the terms containing spatial derivatives of the unresolved variables need to be adjusted to cor-
respond to the outer layer solution. In order to derive governing equations consistent with the numerical
approximation, the spatial variable needs to be rescaled as x = dX, where the boundary thickness d =
(agT)1/2. This yields
oq0b
ot
¼ �a

1

d
ou0b
oX

; ð57Þ

1

d
op0b
oX
¼ �u0b; ð58Þ
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op0b
ot
¼ � 1

gT

ðc� 1ÞT 0b; ð59Þ

cp0b ¼ q0b þ T 0b: ð60Þ
If the boundary layer for u0b is resolved,
ou0

b

oX ¼ Oð1Þ, which would make
ou0

b

ox ¼ Oðd�1Þ inside boundary layer. In
contrast for the unresolved boundary layer,

ou0
b

ox ¼ Oð1Þ, which makes
ou0

b

oX ¼ OðdÞ. However, due to the fact that
the boundary layer is next to the porous media interface, the solution inside of the porous media needs to be
matched with the interface boundary conditions, which would make

ou0
b

oX ¼ Oð1Þ. Thus, in order to mimic the

numerical approximation of
ou0

b

ox for the unresolved boundary layer case, 1
d

ou0
b

oX needs to be replaced by
ou0

b

oX , which
would lead to the following set of equations
oq0b
ot
¼ �a

ou0b
oX

; ð61Þ

1

d
op0b
oX
¼ �u0b; ð62Þ

op0b
ot
¼ � 1

gT

ðc� 1ÞT 0b; ð63Þ

cp0b ¼ q0b þ T 0b; ð64Þ
which can be reduced to the governing equation
o
2f

ot2
¼ � 1

gT

ðc� 1Þ c
of
ot
� a

gT

� �1=2
o

2f

oX 2

" #
ð65Þ
where f is the variable q0b, p0b, T 0b, or u0b. This is a wave equation with strong damping effects, which the numer-
ical simulations use to solve the unresolved boundary layer.

The solutions for the fluid region and the boundary layer can be obtained by the similar matching proce-
dure in Section 3.4.4. For the same harmonic incident wave, the boundary conditions at X = 0 are of the form,
only keeping the leading terms,
u0bðX ¼ 0; tÞ � �ðA1 þ ih1Þ expðixtÞ; ð66Þ
p0bðX ¼ 0; tÞ � 2 expðixtÞ: ð67Þ
The other boundary conditions are that perturbation velocity and pressure are finite at X!1. For this prob-
lem with harmonic oscillating boundary conditions, the complex function method can be applied to solve Eq.
(65). The general solution can be written as
f ðX ; tÞ ¼ C expðk1X þ ixtÞ þ D expðk2X þ ixtÞ; ð68Þ

where
k1;2 ¼ 	ð1þ iÞ cx
2

� �1=2 gT

a

� �1=4

ð69Þ
for sufficiently small gT� c(c � 1)/x. This general solution can be used to find the solutions for u0b and p0b after
incorporating the boundary conditions.

The corresponding solutions for the unresolved boundary layer become
u0bðX ; tÞ ¼ �ðA1 þ ih1Þ exp �ð1þ iÞ cx
2

� �1=2 gT

a

� �1=4

X þ ixt
� �

; ð70Þ

p0bðX ; tÞ ¼ 2 exp �ð1þ iÞ cx
2

� �1=2 gT

a

� �1=4

X þ ixt
� �

: ð71Þ
By substituting the solutions to Eq. (62), the following relations are obtained
A1 ¼ h1 ¼ �ð2cxÞ1=2ða3gTÞ
�1=4

; ð72Þ



Q. Liu, O.V. Vasilyev / Journal of Computational Physics 227 (2007) 946–966 959
and thus, the amplitude and phase errors are as follows
a/A1 ¼ a/h1 ¼ � 2cxð Þ1=2ða=gTÞ
1=4/ ¼ �ð2cxÞ1=2ðg=gTÞ

1=4/3=4; ð73Þ

from which a/A1 = a/h1� 1 is verified.

Therefore, the amplitude and phase errors are of O((g/gT)1/4/3/4). This can be viewed as an estimate for the
numerical error bound when the boundary layer is not properly resolved. Once again, the porosity / can be set
to a small value to guarantee the accuracy of the numerical solution.

3.4.6. Solutions in porous media

In this section a solution in porous media outside of the boundary layer is discussed. For the unresolved
boundary case, the solutions in Eqs. (70) and (71) for the boundary layer can be rewritten in terms of x as
u0bðx; tÞ ¼ �ðA1 þ ih1Þ exp �ð1þ iÞ cx
2

� �1=2

ða3gTÞ
�1=4xþ ixt

� �
; ð74Þ

p0bðx; tÞ ¼ 2 exp �ð1þ iÞ cx
2

� �1=2

ða3gTÞ
�1=4xþ ixt

� �
: ð75Þ
The solution for the porous media can be obtained by matching it with the solution for the boundary layer at
their interface. Since the length scale of the boundary layer is of O(d), where d = (agT)1/2� 1, the solution at the
interface can be obtained, by setting x = bd, where b is a constant related to numerical discretization. This yields
u0bðx; tÞjx¼bd ¼ �ðA1 þ ih1Þ exp �ð1þ iÞb c2x2gT/
4g

� �1
4

þ ixt

" #
; ð76Þ

p0bðx; tÞjx¼bd ¼ 2 exp �ð1þ iÞb c2x2gT/
4g

� �1=4

þ ixt

" #
: ð77Þ
Since /� 1 and the variables match at the interface, the boundary conditions for the porous media can be
written as
u0pðx; tÞjx¼0 ¼ �ðA1 þ ih1Þ expðixtÞ; ð78Þ
p0pðx; tÞjx¼0 ¼ 2 expðixtÞ: ð79Þ
The other boundary conditions are that perturbation velocity and pressure are finite at x!1. For this prob-
lem with harmonic oscillating boundary conditions, the solution for the porous media is given by Eqs. (53)
and (54) with A1 and h1 obtained from Eq. (72) for the unresolved boundary layer case. The same procedure
give the same formula for the resolved boundary layer case. However, A1 and h1 come from Eq. (55).

4. Results and discussion

To obtain sufficiently accurate reflected waves from solid obstacles is critical for the Brinkman penalization
method for the compressible flows. Two benchmark problems are tested for the proposed method. The first
one is the reflection and transmission at the interface between the fluid and the porous media of a 1-D local-
ized acoustic pulse. This problem is used to test the proposed Brinkman penalization to check the reflected
wave magnitude and phase errors. The second is the 2-D acoustic scattering by the cylinder generated by locali-
zed acoustic source. This problem was considered for the Second Computational Aeroacoustics workshop on
Benchmark Problems [41]. In contrast to most of the methods used in workshop, which solved linearized Euler
equations, here the full Navier–Stokes equations are solved. For the Euler equations, the benchmark problems
have exact analytical solutions [42]. The full compressible Brinkman-penalized Navier–Stokes equations for
acoustic Reynolds number Rea = 5 · 105 are solved. The time accurate DNS results for the field in computa-
tion domain are compared with analytical solutions.

4.1. Benchmark problem I: one-dimensional normal wave

The solutions for the 1-D benchmark problem are shown in Figs. 3–6. This acoustic problem is simulated in
the domain X = [0,1]. The fluid occupies X = [0, 0.5], the porous media occupies X = [0.5,1] and the interface
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is at x = 0.5. The initial conditions are localized density, velocity, and pressure perturbations of the Gaussian
distribution:
q0 ¼ u0 ¼ p0 ¼ � exp � lnð2Þ ðx� 0:25Þ2

0:004

" #
; ð80Þ
where the wave amplitude � = 10�3, to the spatially uniform field. It represents a right-traveling acoustic wave
towards the porous media. The corresponding initial conditions for the conservative variables are of the form
q ¼ 1þ q0; m1 ¼ qu0; e ¼ 1

cðc� 1Þ þ
p0

c� 1
þ 1

2
qðu0Þ2: ð81Þ
Two test cases mentioned in Section 3.4.3 are used to test the accuracy and convergence rate for the proposed
method.

First, consider the problem of Case 1 in Section 3.4.3 with various porosity / values, a = 10�2, aT = 10�2,
and the convergence rate of O(/3/4) using the unresolved boundary layer. For efficient purpose, the space step
size Dx = 10�3 is used for the porosity / 6 10�1 values. Because the boundary layer thickness is less than
3 · 10�3, there are at most 2 mesh points inside the boundary layer. Thus, the boundary layer is not resolved.

Fig. 3a shows the initial acoustic wave snapshot of the perturbation pressure. It is also the exact acoustic
wave snapshot of the perturbation pressure at time t = 0.5 for the solid wall boundary conditions, which can
be used to compare with the numerical solution for the proposed model. When the right-traveling wave hits
the wall, a part of the wave is reflected back with some energy and mass losses and the rest is transmitted into
the porous media. The ideal results are those with small amplitude and phase errors for the reflected wave.
Note that the wave transmission happens only in the fluid part of porous media region. Fig. 3b shows a typical
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acoustic wave snapshot of the perturbation pressure at time t = 0.5 for the porosity / = 10�3. The pulse at
x = 0.25 is the reflected acoustic wave from the wall, governed by the wave equation in the fluid region, while
the wave at x > 0.5 is the transmitted wave, governed by the diffusion equation in the porous media region.
This transmission wave in the porous media region has an obviously high amplitude. But, it occurs only in
the fluid part of the porous media region. Note that the fluid occupies /� 1 of the total volume fraction
of the porous media. Thus, this amplitude needs to be multiplied by / to get the effective amplitude of the
transmission wave over the whole porous media. Due to the small porosity /, the actual transmission energy
loss is limited and most energy is reflected back from the interface, resulting in the negligible amplitude error
shown in Fig. 3a and b.

As already indicated in the error analysis section, in order for the compressible Brinkman penalization
method to represent the complex geometry flows accurately, the amplitude and phase errors of the reflected
waves need to be minimized. Fig. 4 is used to show the two kinds of errors for the reflected waves using
the proposed method. In the figure, the exact reflected perturbation pressure from the solid wall are compared
with the numerical solutions for various porosity values / = 0.2, / = 0.1, and / = 10�3. It shows that the
smaller the porosity, the better the amplitude and phase errors. When the porosity is sufficiently small, the
numerical results are in very good agreement with the exact results. The amplitude errors are approximately
15.2%, 8.9%, and 0.3% for / = 0.2, / = 0.1, and / = 10�3, respectively.

Another important aspect of the Brinkman penalization is its ability to actively control the numerical
error through control parameters, /, g, and gT, by setting them to arbitrary small values. The effectiveness
of the Brinkman penalization is demonstrated in Fig. 5a, where the convergence rate for the reflected waves
is shown. For the numerical errors, the peak values of the reflected acoustic wave are considered. The rel-
ative error is defined as (� � p 0)/�, where � = 10�3 is the exact wave amplitude of the pressure perturbation
and p 0 is the numerical peak values of the pressure perturbation. The numerical results show that the errors
converge in the order of /3/4, which verifies the convergence rate for the unresolved boundary layer using
the asymptotic analysis. The figure also shows that when the porosity is less than 5 · 10�3, the error is less
than 1%.

Next, consider the problem of Case 2 in Section 3.4.3 with various porosity / values, a = /, aT = 0.4, and
the convergence rate of O(/3/2) using the resolved boundary layer and O(/) using the unresolved boundary
layer. The space step size Dx = 1.25 · 10�4 is used for the porosity / 6 10�1 values. In this case, the boundary
layer is resolved for larger porosity and unresolved for smaller values of /. The numerical results of Case 2 are
similar to the results of Case 1. For the accuracy, its results also shows that the smaller the porosity, the better
the amplitude and phase errors. When the porosity is sufficiently small, the numerical results are in very good
agreement with the exact results. However, the convergent rate is different from that in Case 1. Fig. 5b shows
the error convergence rate for the reflected waves for Case 2. The numerical results show that the errors con-
verge in the order of /3/2 when / > 2 · 10�2 while the errors converge in the order of / when / < 2 · 10�2.
The difference results from whether the boundary layer is resolved or not. The results verifies the convergence
rates using the asymptotic analysis. The figure also shows that when the porosity is less than 8 · 10�3, the error
is less than 1%.

Fig. 6 shows the snapshots of the velocity and pressure perturbations in the porous media and the boundary
layer for / = 10�2 when the incident wave hits the porous media at time t = 0.2. It illustrates the situation of
the unresolved boundary layer. Fig. 6a and b show the perturbations in the porous media. They clearly show
that the pressure perturbation is sufficiently smooth and its length scale is of O(1). By contract, there is a very
thin velocity boundary layer. To see the numerical approximation in the boundary layer, Fig. 6c and d show
the mesh details. Because the boundary layer thickness is around 5 · 10�4 while the space step size
Dx = 1.25 · 10�4, there are about only 4 mesh points in the boundary layer for the numerical simulations.
It is obvious that the length scale of velocity has not been resolved. This unresolved boundary layer results
in the different convergence rate, although the approach does give sufficiently accurate numerical solutions.

For this 1-D plane wave propagation problem, the wave propagation direction is always perpendicular to
the wall surface and the porosity / = 0.02 gives sufficiently accurate results with the error 2.7%. For two-
dimensional problems, the wave propagation direction may be oblique to the wall surface and thus part of
the wave may scatter around the obstacle rather than penetrate it. In this case, the large porosity / = 0.1
may be sufficient to give accurate results.
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4.2. Benchmark problem II: single source with an obstacle

The 2-D cylindrical acoustic benchmark problem is simulated in a rectangular domain X = [�5,9] · [�5,5].
A circular cylinder with radius r = 0.5 is located at the origin. The initial conditions are localized pressure per-
turbations of the Gaussian distribution:

O.V. Vasilyev / Journal of Computational Physics 227 (2007) 946–966963
p0 ¼ � exp � lnð2Þ ðx� 4Þ2 þ y2

0:04

 !" #
; ð82Þ
where � = 10�3, to the spatially uniform field. The corresponding initial conditions for the conservative vari-
ables are of the form
q ¼ 1þ p0; e ¼ 1

cðc� 1Þ þ
p0

c� 1
; m1 ¼ 0; m2 ¼ 0: ð83Þ
In the problem, / = 0.02, a = 5 · 10�2, and aT = 5 · 10�2 are used. For the non-reflecting boundaries, Fre-
und’s zonal approach [43] is used. The solutions for this benchmark problem are shown in Figs. 7 and 8.
To highlight the difference among the numerical simulations, the same scales are used for Fig. 7.

Due to the initial pressure perturbations, a principle cylindrical acoustic waves forms and propagate
towards the boundaries and the cylinder. This is illustrated in Fig. 7a, where a snapshot of the perturbation
pressure is shown at time t = 2.0. When the principle acoustic wave front meets the cylinder, the wave reflects
off the right surfaces of the cylinder directly facing the initial pulse and generates the second acoustic wave
propagating towards the boundaries. The rest of the principle wave continues to propagate outward. This
is illustrated in Fig. 7b, a snapshot of the perturbation pressure at time t = 4.0. The third wave front closest
to the cylinder is generated when two parts of the principle wave front, split by the cylinder, collide and merge
to the left of the surface of the cylinder. This is illustrated in Fig. 7c, a snapshot of the perturbation pressure at
time t = 6.0. The third wave surrounds the cylinder and propagates towards the boundaries. This is illustrated
in Fig. 7d, a snapshot of the perturbation pressure at time t = 8.0. On most parts of the domain, the three
acoustic waves are separate while on some part, they overlap to each other. Note that the quality of the second
and the third acoustic wave is directly related to the Brinkman penalization method for the cylinder. Fig. 7
Fig. 7. 2-D problem snapshots of the perturbation pressure at time: (a) t = 2.0, (b)t= 4.0, (c)t= 6.0, and (d)t= 8.0.
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suggests that the proposed compressible Brinkman penalization method can be used to catch the important
physical structures.

In order to test the accuracy of the proposed method for compressible flows, the numerical results are com-
pared with the exact results at five observation points marked on the computational domain of Fig. 8. These
points surround the circular obstacle and are in different directions with respect to the circular cylinder and the
source. Note that the flow is symmetric to the x axis. The time history of the perturbation pressure at five
points are shown in Fig. 8A–E. Note the presence of three distinctive waves that reach points A–E at different
times. All of the numerical results are in excellent agreement with the exact results for all observation points at



Q. Liu, O.V. Vasilyev / Journal of Computational Physics 227 (2007) 946–966 965
different directions. The proposed Brinkman penalization method gives negligible amplitude and phase errors.
In contrast, the naive straightforward extension of Brinkman penalization technique [26], i.e. / = 1, results in
large amplitude and phase errors, as also clearly seen in Fig. 4.

5. Conclusion

A Brinkman penalization method has been extended for numerical simulations of compressible flows
around solid obstacles of complex geometries. The proposed method is based on a physically sound mathe-
matical model for compressible flows through porous media. In addition to the penalized momentum and
energy equations, the continuity equation for porous media is considered inside obstacles. In this model,
the penalized porous region acts as a high impedance medium, resulting in negligible wave transmissions.
The asymptotic analysis reveals that the proposed Brinkman penalization technique results in the amplitude
and phase errors of order O((g/)1/2) and O((g/gT)1/4/3/4), when the boundary layer within the porous media is
respectively resolved or unresolved. Thus, the amplitude and phase errors of the reflected waves can be con-
trolled through porosity /, which can be set to an arbitrary small value to guarantee the accuracy of the
numerical solutions. This accuracy is crucial for aero-acoustic problems. The results of direct numerical sim-
ulation are in excellent agreement with the analytical solutions. The numerical simulations verify the accuracy
and convergence rates.

The insights provided by the proposed Brinkman penalization method can be used to extend other
Immersed Boundary methods to compressible flows. For example, immersed boundary implementation of
the continuity equation needs to mimic the presence of high impedance media to ensure negligible wave trans-
mission. Future work includes the generalization of the proposed Brinkman penalization for slip, rotational,
and heat conducting boundary conditions, extension of the algorithm to supersonic flows with the presence of
shock waves, the use of the Brinkman penalization technique with hyperbolic solvers, and the development of
fully automated approach for defining complex computational domains from standard Computer Aided
Design (CAD) files.
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